
ALCATEL-LUCENT – 801921 – Ph. Larvet, Research & Innovation

DEVICE AND METHOD FOR BUILDING COMPILABLE AND EXECUTABLE

APPLICATIONS FROM SPECIFICATIONS EXPRESSED BY CLASSES

The present invention relates to the building of compilable and 5

executable applications from specifications expressed by classes and within

the scope of object-oriented programming.

The term “class” means here an expression that is expressed by a

class name and at least one definition (or representation) of stored data

and/or at least one public function described by at least one instruction. 10

Moreover the expression “application specification” means here at

least one sentence which defines at least one requirement that the desired

application should fulfill. More precisely, the application requirements describe

what the application will do, and what its functional and non-functional

features are. These requirements are preferably expressed in natural 15

language, but they may be expressed under the form of any formal or non-

formal textual representation.

Many authors have described methods to write (software) applications

but these methods are either fully manual or depending on software

development environments such as Java SDK, Eclipse, Visual Studio, for 20

instance. So, these methods do not allow to build automatically executable

applications from their specifications.

The object of this invention is to overcome the above mentioned

drawback, and more precisely to allow a building of executable applications

from specifications expressed by high-level representations of classes (each 25

of them storing data and/or implementing at least one public function and/or

being able to activate at least one chosen public function of at least one other

class).

For this purpose, the invention provides a method for building

compilable and executable applications from classes and consisting: 30

- of expressing a specification describing an application to be built in terms of

formal representations of classes written in a high-level symbolic language

2

comprising a class declaration, a data declaration, a function declaration,

and a restricted group of instruction types chosen among four basic types

comprising respectively: instructions for accessing (A) a chosen stored data

of a chosen class, instructions for computing (C) a chosen data from a

chosen operator and possibly from some given input parameter(s), 5

instructions for testing (T) if a chosen class data satisfies to a chosen

condition, and instructions for generating an activation (G) of a chosen

public function of any class possibly with at least one chosen data

parameter, then

- of producing “new” class representations in a chosen programming 10

language from these high-level formal representations of the specification

classes, and

- of assembling these new class representations to build a compilable and

executable application corresponding to the specification.

The method according to the invention may include additional 15

characteristics considered separately or combined, and notably:

- each public function of a class may be described by a sequence of at least

one instruction having a type chosen in the restricted group of four basic

instruction types A, C, T and G;

- the restricted group of instruction types may contain the four basic types of 20

instruction A, C, T and G;

- in a variant the restricted group of instruction types may contain less than

the four basic types of instruction A, C, T and G;

- each time one receives a specification describing an application to be built,

one may perform an automatic analysis of this specification to determine 25

the classes expressing it, then one may determine automatically the formal

representations of these determined specification classes;

- one may store at least some of the class formal representations from which

said new class representations are produced, and one may access these

stored class formal representations to determine the formal representations 30

of the classes that are expressing the received specification.

The invention also provides a device for building compilable and

3

executable applications from high-level representations of classes and

comprising a generation means arranged:

- for producing “new” class representations in a chosen programming

language from formal representations of specification classes expressing a

specification describing an application to be built, each class formal 5

representation being written in a high-level symbolic language comprising a

class declaration, a data declaration, a function declaration, and a restricted

group of instruction types chosen among four basic types comprising

respectively instructions for accessing (A) a chosen stored data of a chosen

class, instructions for computing (C) a chosen data from a chosen operator 10

and possibly from some given input parameter(s), instructions for testing

(T) if a chosen class data satisfies to a chosen condition, and instructions

for generating an activation (G) of a chosen public function of any class

possibly with at least one chosen data parameter, and

- for assembling these new class representations to build a compilable and 15

executable application corresponding to the specification.

The device according to the invention may include additional

characteristics considered separately or combined, and notably:

- each public function of a class may be described by a sequence of at least

one instruction having a type chosen in the restricted group of four basic 20

instruction types A, C, T and G;

- it may comprise an analysis means arranged, each time is received a

specification describing an application to be built, for analysing this

specification to determine the classes expressing it;

- it may comprise a storing means for storing at least some of the class 25

formal representations from which the new class representations are

produced;

� the analysis means may be arranged for accessing the storing means in

order to extract the stored formal representations of the classes that are

expressing the received specification. 30

Other features and advantages of the invention will become apparent

on examining the detailed specifications hereafter and the appended drawing,

4

wherein the unique figure schematically illustrates an example of embodiment

of a device according to the invention.

The appended drawing may serve not only to complete the invention,

but also to contribute to its definition, if need be.

The invention aims at offering a device, and the associated method, 5

intended for building executable applications from the text of their

specifications expressed by classes.

The invention addresses any type of application described by a

textual written specification expressing the requirements of the application in

terms of formal representations of classes. 10

Let us remind that the term “class” means here an expression that is

defined (or expressed) by one class name, and at least one definition (or

representation) of a stored data and/or at least one public function described

by a sequence of at least one instruction.

As schematically illustrated in the unique figure, a device D according 15

to the invention comprises at least a generation module (or code generator)

GM.

This generation module (or code generator) GM intervenes each time

an executable application AP has to be built from a specification AS.

Let us remind that the expression “application specification” means 20

here at least one sentence which defines at least one requirement that the

desired application should fulfill. More precisely, the application requirements

describe what the application AP will do, and what its functional and non-

functional features are. These requirements are preferably expressed in

natural language, but they may be expressed under the form of any formal or 25

non-formal textual representation.

According to the invention, every application specification AS is

expressed in terms of formal representations of classes Ci that are written in a

high-level symbolic language comprising chosen types of statement.

These chosen statement types comprise three types of declaration 30

and a restricted group of instruction types.

The three types of declaration are the class declaration, the data

5

declaration and the function declaration.

The instruction types of each restricted group are chosen among four

basic types comprising respectively:

- instructions for accessing a chosen stored data of a chosen class. This

type may be referenced A (for “Access”) because it comprises instructions 5

consisting in an access function,

- instructions for computing a chosen data from a chosen operator and

possibly from some given input parameter(s). This type may be referenced

C (for “Calculate” (or “Compute”)) because it comprises instructions

consisting in a calculation function, 10

- instructions for testing if a chosen class data satisfies to a chosen

condition. This type may be referenced T (for “Test”) because it comprises

instructions consisting in a test function, and

- instructions for generating an activation of a chosen public function (or

method) of any class possibly with at least one chosen data parameter (or 15

in other words for generating events for any class). This type may be

referenced G (for “Generate”) because it comprises instructions consisting

in an event generation, this event being translated, within the object-

oriented world, into a function call with parameters.

For instance, if a class Ci is designated by its name (“class_name”) 20

and a class data is designated by its name (“data_name”), then:

- an access function can be written A(class_name, data_name), or

A(class_name.data_name) if a dotted notation is used,

- a calculation function can be written C(result, operand1, operator,

operand2), where operand1 and operand2 are class data or results of 25

function calls,

- a test function can be written T(condition, action_if_true, action_if_false),

where “action_if_true” designates an action to be carried out if the

associated condition is true (or satisfied), “action_if_false” designates an

action to be carried out if the associated condition is false (or not satisfied), 30

and “condition” expresses a logical condition on class data or results of

function calls, and

6

- a generation function can be written G(class_name, function_name,

parameter) or G(class_name.function_name(parameters)) if the dotted

notation is used, where “function_name” designates a public function (or

method) of the class “class_name”.

The classes Ci may belong to at least three different categories. A 5

first category comprises classes that store at least one data. A second

category comprises classes that are defined by a sequence of at least one

specific instruction. A third category comprises classes that store at least one

data and are defined by a sequence of at least one specific instruction.

According to the invention a “specific instruction” is an instruction 10

expressed as a predicate and having one of the four above mentioned basic

instruction types (A, C, T, G).

The classes Ci that express (or compose) an application specification

AS can be determined from the text of this application specification AS by a

device user. In this case, the user builds a formal representation of each 15

determined class Ci from the three above mentioned declaration types (class,

data, function) and depicts each function of each class by using instructions

that belong to a restricted group of instruction types chosen among the four

above mentioned basic instruction types. For instance, the device D may

propose to the user to select at least one instruction type among the four 20

basic ones (A, C, T, G).

In a variant, the device D may comprise a storing means SM intended

for storing formal representations of a set of classes Ci (i = 1 to N). In this

case, the user can determine (or select), into the storing means SM, the

formal representations of the classes Ci that compose (or express) the 25

application specification AS, according to him.

Any type of storing means SM, capable of storing formal

representations of classes Ci and known from the man skilled in the art, may

be used, and notably databases, flash memories, CDs, USB keys, ROMs or

RAMs, flat files systems and any other kind of repository. 30

In another variant, the device D may comprise an analysis module AM

intended, each time an application specification AS is received, for analysing

the text of this application specification AS in order to determine the classes

7

Ci composing (or expressing) it. Once the analysis module AM has

determined the classes Ci composing an application specification AS, the user

builds a formal representation of each determined class Ci from the three

above mentioned declaration types (class, data, function) and depicts each

function of each class by using instructions that belong to a restricted group of 5

instruction types chosen among the four above mentioned basic instruction

types. For instance, the device D may propose to the user to select at least

one instruction type among the four ones (A, C, T, G).

In still another variant, the device D may comprise the above

mentioned storing means SM and an analysis module AM which is not only 10

intended for analysing the text of a received application specification AS in

order to determine classes Ci composing it, but also for accessing the storing

means SM in order to extract the formal representations of these determined

classes Ci. In this variant the analysis module AM may be divided in two sub-

modules, a first one for performing the text analysis and a second one for 15

extracting from the storing means SM the formal representation(s) of the

class(es) determined by the first sub-module in the specification text.

Moreover, in this variant the analysis module AM can be coupled to external

ontology(ies) or external dictionary(ies) or thesaurus in order to more easily

extract classes by means of a semantic analysis. 20

Once the formal representations of the classes Ci composing an

application specification AS have been defined by a user or extracted from the

storing means SM by the analysis module AM, the generation module GM is

arranged for producing “new” class representations, i.e. classes in source

code, in a chosen programming language from these formal representations, 25

and then for assembling these source code classes in order to build the

desired compilable and executable application AP which corresponds to the

received application specification AS.

For instance, the chosen programming language could be Java, C++

or C#. 30

The programming process according to the invention can be called

“reduced instruction set programming” (RISP) and can be compared with the

conception of biological proteins. Let us remind that a protein is made of a

8

chosen number of given peptides defining together a polypeptide, each of

them being made of a chosen ordered sequence of four amino-acids

(Adenine (A), Guanine (G), Cytosine (C) and Thymine (T)). For instance, a

polypeptide (or protein) can be partly defined by the following sequence

(ACTG-AACG-ACCG-ACTG-…). Moreover, proteins communicate 5

therebetween through molecule or ionic exchanges. So, in an analogy with the

protein domain, the classes Ci according to the invention correspond to the

peptides, the class data correspond to the molecules, and the generated

events correspond to the exchange of molecules (when a function is called

with parameters) or to a ionic exchange (when a function is called without 10

parameter). Therefore, an executable application AP (produced by the

generation module GM) is a kind of ordered sequence of groups of X specific

instructions whose types are chosen into the chosen restricted group of M

basic instruction types. M is an integer number which is at least equal to one

(1). For instance, M = 4 (as it is the case in biological peptides). 15

So, an application is a set of instructions that are taken as inputs by

the generation module (or code generator GM) to build a complete and

compilable application AP.

A simple, partial and non limiting example will be now described to

illustrate the programming process that is performed by the device D 20

according to the invention.

This non limiting example is relative to the use of an automated teller

machine (or ATM). Let us remind that an automated teller machine (ATM) can

be defined as a computerized telecommunications device that provides

customers of a financial institution (such as a bank) with access to financial 25

transactions in a public space without the need for a human clerk or bank

teller. On most modern ATMs, the customer is identified by inserting a plastic

card with a magnetic stripe or a plastic smartcard with a chip, that contains a

unique card number and some security information, such as an expiration

date. Security is provided by the customer entering a personal identification 30

number (PIN). When using an ATM, a customer can access his bank account

in order to make cash withdrawals (or credit card cash advances) and check

his account balance.

9

It is assumed hereafter that the application specification AS aims at

allowing a customer to make a withdrawal. Such an application specification

AS can be defined by the following sentences, for instance:

- the customer introduces his card in the ATM,

- the ATM asks the customer to enter his secret code (PIN code), 5

- the customer enters his code,

- the ATM (card reader) checks the code,

- if the code is bad, after three tries, the card is returned to the user,

- if the code is good, the ATM asks the customer to enter the amount of his

withdrawal, 10

- the customer enters the amount he wants,

- the ATM checks onto the card if the withdrawal amount is authorized,

- the ATM, via a bank interface, asks the customer’s account if the bank

balance allows the withdrawal,

- if the above conditions are OK, the banknotes can be distributed through 15

the distribution slot.

The analysis of this simple specification text allows to determine the

following classes Ci: card, card reader, bank interface, ATM, slot. The

exchanges of events between these classes Ci allow to implement the

application AP. An example of formal representations in “ACTG notation” of 20

the determined classes Ci can be as follows

card {
 data:
 secret_code=1234; 25
}

card_reader {
 data:
 code_input; 30

 functions:
 introduce_card() {
 G(dialogue, “Your card is being read”);
 G(card_reader, check_code); 35
 }

 check_code() {
 G(dialogue, “Please enter your PIN code”);

10

 C(code_input, input());
T(code_input==A(card, secret_code), G(ATM,
ask_amount), code_KO);

 }
 5
 code_KO() {
 G(dialogue, “Bad code“);
 G(card_reader, check_code);
 }
 return_card() { 10

G(dialogue, “Please take your card to get your
money”);

 G(slot, distribute, A(ATM, withdrawal_amoun t));
 }
} 15

slot {
 data:
 nb_of_banknotes;
 20
 functions:
 distribute(parameter) {
 C(nb_of_banknotes=parameter/A(banknote, valu e));

G(dialogue,”Here is your money (nb of banknotes =
“+nb_of_banknotes+”)”); 25

 }
}

From the ACTG notation, the code generator GM can automatically

produce the following new class in Java for the class “card reader”: 30

class card_reader {
 //data:
 int code_input;
 35
 // instances (generated)
 dialogue thedialogue;
 card thecard;
 ATM theATM;
 slot theslot; 40

 //constructor (generated)
 public card_reader() {
 thedialogue = new dialogue();
 thecard = new card(); 45
 theATM = new ATM();
 theslot = new slot();
 }

 //methods: 50
 public void introduce_card() {
 thedialogue.display(“Your card is being rea d”);

11

 this.check_code();
 }

 public void check_code() {

thedialogue.display(“Please enter your PIN 5
code”);

 code_input = input();
if(code_input==thecard.secret_code)
theATM.ask_amount();

 else this.code_KO(); 10
 }

 public void code_KO() {
 thedialogue.display(“Bad code”);
 this.check_code(); 15
 }

 public void return_card() {

thedialogue.display(“Please take your card to
get your money”); 20

 theslot.distribute(theATM.withdrawal_amount);
 }
}

In practice, the code generator GM produces automatically new Java 25

classes for all the classes Ci expressing the specification AS (here, these

classes are: card, card reader, bank interface, ATM, slot).

The device D, and more precisely its generation module GM and

possibly its storing means SM and/or analysis module AM, are preferably

software modules. But they may be also respectively made of electronic 30

circuit(s) or hardware modules, or a combination of hardware and software

modules.

The invention can also be considered in terms of a method for

building executable applications AP from classes Ci composing a specification

AS. 35

Such a method may be implemented by means of a device D such as

the one above described with reference to the unique figure. Therefore, only

its main characteristics will be mentioned hereafter.

The method according to the invention consists:

- of expressing a specification AS describing an application AP to be built in 40

terms of formal representations of classes Ci written in a high-level

symbolic language comprising three declaration types: a class declaration,

12

a data declaration, a function declaration, and a restricted group of

instruction types chosen among four basic types comprising respectively

instructions for accessing (A) a chosen stored data of a chosen class,

instructions for computing (C) a chosen data from a chosen operator and

possibly from some given input parameter(s), instructions for testing (T) if a 5

chosen class data satisfies to a chosen condition, and instructions for

generating an activation (G) of a chosen public function of any class

possibly with at least one chosen data parameter, then

- of producing “new” class representations in a chosen programming

language from these formal representations of the specification classes Ci, 10

and

- of assembling these new class representations to build a compilable and

executable application AP corresponding to this specification AS.
When the analysis of the text of specification AS is performed

automatically (by the analysis module AM), and when the formal 15

representations of the specification classes are extracted automatically from

the storing means SM (by the analysis module AM), the invention can be

considered as a mean for producing a compilable and executable application

AP directly from the text of its specification AS.

The invention offers a new approach which strongly differs from the 20

biological approaches known from the art, such as genetic algorithms, neural

networks and populationist ant-programming.

It is reminded that genetic algorithms (or evolutionary algorithms)

belong to the family of meta-heuristic algorithms, whose aim is to get a close

solution, in an acceptable time, to an optimization problem, when no exact 25

method is known to solve the problem in a reasonable time. By using the

concepts of gene and mutation, the genetic algorithms use the notion of

natural selection and evolution developed during the XIX century by

Ch.Darwin and apply these notions to a population of potential solutions to the

given problem. So, one gets closer to an acceptable solution by successive 30

“jumps”.

The present invention does not use the concept of gene, nor

mutation, nor natural selection, nor else evolution, and its aim is not to

optimize but to ease production of executable applications within the scope of

13

object-oriented programming.

An artificial neural network is a computation model whose design is

very schematically inspired from the functioning of true neurons (human or

not). The neural networks are generally optimized by statistic-type learning

methods, so they belong firstly to the family of statistical applications, which 5

they enrich with a set of paradigms allowing to generate wide functional

spaces, flexible and partially structured, and secondly to the family of artificial

intelligence methods, which they enrich by allowing to take decisions that lean

more on the perception than on the formal logical reasoning.

The present invention does not use the concept of neuron nor 10

statistic, is not an artificial intelligence method, and its aim is not to fire a

decision but to ease the production of executable programs within the scope

of object-oriented programming.

The populationist ant-programming is a heuristic method for

combinatorial optimization problems inspired by the foraging behavior of ants. 15

It allows a deeper insight into the general principles underlying the use of an

iterated Monte Carlo approach for the multi-stage solution of a combinatorial

optimization problem. Such an insight is intended to provide the designer of

algorithms with new categories, an expressive terminology, and tools for

dealing effectively with the peculiarities of the problem at hand. It searches for 20

the optimal policy of a multi-stage decision problem to which the original

combinatorial problem is reduced.

The present invention does not use the concept of ant, nor colony,

nor else optimization, and its aim is not an heuristic for combinatorial

optimization problems, but to ease the production of executable applications 25

within the scope of object-oriented programming.

The invention is not limited to the embodiments of method and device

described above, only as examples, but it encompasses all alternative

embodiments which may be considered by one skilled in the art within the

scope of the claims hereafter. 30

14

CLAIMS

1. Method for building compilable and executable applications (AP)

from high-level representations of classes (Ci), each class storing data and/or

implementing at least one public function and/or being able to activate at least 5

one chosen public function of at least one other class, characterized in that

said method consists i) of expressing a specification (AS) describing an

application (AP) to be built in terms of formal representations of classes (Ci)

written in a high-level symbolic language comprising a class declaration, a

data declaration, a function declaration, and a restricted group of instruction 10

types chosen among four basic types comprising respectively instructions for

accessing a chosen stored data of a chosen class, instructions for computing

a chosen data from a chosen operator and possibly from some given input

parameter(s), instructions for testing if a chosen data satisfies to a chosen

condition, and instructions for generating an activation of a chosen public 15

function of any class possibly with at least one chosen data parameter, then ii)

of producing “new” class representations in a chosen programming language

from said formal representations of the specification classes (Ci), and iii) of

assembling said new class representations to build a compilable and

executable application (AP) corresponding to said specification (AS). 20

2. Method according to claim 1, characterized in that each public

function of a class is described by a sequence of at least one instruction

having a type chosen in said restricted group of four basic instruction types.

3. Method according to one of claims 1 and 2, characterized in that

said restricted group of instruction types contains said four basic types of 25

instruction.

4. Method according to one of claims 1 and 2, characterized in that

said restricted group of instruction types contains less than said four basic

types of instruction.

5. Method according to one of claims 1 to 4, characterized in that, each 30

time one receives a specification (AS) describing an application (AP) to be

built, i) one performs an automatic analysis of said specification (AS) to

determine said classes expressing it, then ii) one determines automatically

15

said formal representations of these determined specification classes (Ci).

6. Method according to one of claims 1 to 5, characterized in that one

stores at least some of said class formal representations from which said new

class representations are produced, and one accesses these stored class

formal representations to determine the formal representations of the classes 5

that are expressing said received specification (AS).

7. Device (D) for building compilable and executable applications (AP)

from high-level representations of classes (Ci), each class storing data and/or

implementing at least one public function and/or being able to activate at least

one chosen public function of at least one other class, characterized in that 10

said device comprises a generation means (GM) arranged i) for producing

“new” class representations in a chosen programming language from formal

representations of specification classes (Ci) expressing a specification (AS)

describing an application (AP) to be built, each class formal representation

being written in a high-level symbolic language comprising a class declaration, 15

a data declaration, a function declaration, and a restricted group of instruction

types chosen among four basic types comprising respectively instructions for

accessing a chosen stored data of a chosen class, instructions for computing

a chosen data from a chosen operator and possibly from some given input

parameter(s), instructions for testing if a chosen class data satisfies to a 20

chosen condition, and instructions for generating an activation of a chosen

public function of any class possibly with at least one chosen data parameter,

and ii) for assembling said new class representations to build a compilable

and executable application (AP) corresponding to said specification (AS).

8. Device according to claim 7, characterized in that each public 25

function of a class is described by a sequence of at least one instruction

having a type chosen in said restricted group of four basic instruction types.

9. Device according to one of claims 7 and 8, characterized in that said

restricted group of instruction types contains said four basic types of

instruction. 30

10. Device according to one of claims 7 and 8, characterized in that said

restricted group of instruction types contains less than said four basic types of

instruction.

16

11. Device according to one of claims 7 to 10, characterized in that it

comprises an analysis means (AM) arranged, each time it receives a

specification (AS) describing an application to be built, for analysing said

specification (AS) to determine classes expressing it.

12. Device according to one of claims 7 to 11, characterized in that it 5

comprises a storing means (SM) for storing at least some of said class formal

representations from which said new class representations are produced.

13. Device according to the combination of claims 11 and 12,

characterized in that said analysis means (AM) is arranged for accessing said

storing means (SM) in order to extract the stored formal representations of the 10

classes that are expressing said received specification (AS).

ALCATEL-LUCENT – 801921 – Ph. Larvet, Research & Innovation

ABSTRACT

DEVICE AND METHOD FOR BUILDING COMPILABLE AND

EXECUTABLE APPLICATIONS FROM SPECIFICATIONS EXPRESSED

BY CLASSES

A device (D) is intended for building compilable and executable applications

(AP) from high-level representations of classes, each class storing data

and/or implementing at least one public function and/or being able to activate

at least one chosen public function of at least one other class. This device

(D) comprises a generation means (GM) arranged i) for producing “new”

class representations in a chosen programming language from formal

representations of specification classes expressing a specification (AS)

describing an application (AP) to be built, each class formal representation

being written in a high-level symbolic language comprising a class

declaration, a data declaration, a function declaration, and a restricted group

of instruction types chosen among four basic types comprising respectively

instructions for accessing a chosen stored data of a chosen class,

instructions for computing a chosen data from a chosen operator and

possibly from some given input parameter(s), instructions for testing if a

chosen class data satisfies to a chosen condition, and instructions for

generating an activation of a chosen public function of any class possibly

with at least one chosen data parameter, and ii) for assembling these new

class representations to build a compilable and executable application (AP)

corresponding to the specification (AS).

(Unique Figure)

Abstract figure

Unique Figure

SM

AM

GM

AS

AP

D

1/1

Unique Figure

SM

AM

GM

AS

AP

D

